Основное уравнение МКТ

Уравнение, положенное в основу молекулярно-кинетической теории, связывает макроскопические величины, описывающие состояние идеального газа (например, давление) с параметрами его молекул (их массами и скоростями). Это уравнение имеет вид:

  \[p=\frac{1}{3} m_0 n\overline{v^2 }\]

Здесь m_0 – масса газовой молекулы, n – концентрация таких частичек в единице объема, \overline{v^2 } – усреднённый квадрат скорости молекул.

Основное уравнение МКТ наглядно объясняет, каким образом идеальный газ создает давление на окружающие его стенки сосуда. Молекулы все время ударяются о стенку, воздействуя на нее с некоторой силой F. Тут следует вспомнить третий закон Ньютона: когда молекула ударяется о предмет, на нее действует сила -F, вследствие чего молекула «отбивается» от стенки. При этом мы считаем соударения молекул со стенкой абсолютно упругими: механическая энергия молекул и стенки полностью сохраняется, не переходя во внутреннюю энергию тел. Это значит, что при соударениях изменяются только скорости молекул, а нагревания молекул и стенки не происходит.

Основное уравнение МКТ

Зная, что соударение со стенкой было упругим, мы можем предсказать, как изменится скорость молекулы после столкновения. Модуль скорости останется таким же, как и до соударения, а направление движения изменится на противоположное относительно оси Ох (считаем, что Ох – это та ось, которая перпендикулярна стенке).

Молекул газа очень много, движутся они хаотично и о стенку ударяются часто. Найдя геометрическую сумму сил, с которой каждая молекула воздействует на стенку, мы узнаём силу давления газа. Чтобы усреднить скорости молекул, необходимо использовать статистические методы. Именно поэтому в основном уравнении МКТ используют усредненный квадрат скорости молекул \overline{v^2 }, а не квадрат усредненной скорости \bar{v}^2: усредненная скорость хаотично движущихся молекул равна нулю, и в этом случае никакого давления мы бы не получили.

Теперь ясен физический смысл уравнения: чем больше молекул содержится в объеме, чем они тяжелее и чем быстрее движутся – тем большее давление они создают на стенки сосуда.

Основное уравнение МКТ для модели идеального газа

Следует заметить, что основное уравнение МКТ выводилось для модели идеального газа с соответствующими допущениями:

  1.  Соударения молекул с окружающими объектами абсолютно упругие. Для реальных же газов это не совсем так; часть кинетической энергии молекул всё-таки переходит во внутреннюю энергию молекул и стенки.
  2.  Силами взаимодействия между молекулами можно пренебречь. Если же реальный газ находится при высоком давлении и сравнительно низкой температуре, эти силы становятся весьма существенными.
  3.  Молекулы считаем материальными точками, пренебрегая их размером. Однако размеры молекул реальных газов влияют на расстояние между самими молекулами и стенкой.
  4.  И, наконец, основное уравнение МКТ рассматривает однородный газ – а в действительности мы часто имеем дело со смесями газов. Как, например, воздух.

Однако для разреженных газов это уравнение дает очень точные результаты. Кроме того, многие реальные газы в условиях комнатной температуры и при давлении, близком к атмосферному, весьма напоминают по свойствам идеальный газ.

Как известно из законов динамики, кинетическая энергия любого тела или частицы E_k =\frac{mv ^2 }{2} . Заменив произведение массы каждой из частичек и квадрата их скорости в записанном нами уравнении, мы можем представить его в виде:

  \[p= \frac{2}{3} nE _k \]

Также кинетическая энергия газовых молекул выражается формулой E_{k} =\frac{3}{2} kT, что нередко используется в задачах. Здесь k – это постоянная Больцмана, устанавливающая связь между температурой и энергией. k=1,38•10-23 Дж/К.

Основное уравнение МКТ лежит в основе термодинамики. Также оно используется на практике в космонавтике, криогенике и нейтронной физике.