Результатом диффузии при постоянной температуре является выравнивание химических потенциалов. В однофазной системе при постоянной температуре и при отсутствии внешних сил диффузия выравнивает концентрацию компонента фазы во всей системе. Если на систему действуют внешние силы или поддерживается градиент температуры, то в результате диффузии устанавливаются градиенты концентраций отдельных компонентов (термодиффузия, электродиффузия и другие процессы).
Уравнение диффузии в одномерном случае
Уравнение диффузии в одномерном случае () в двухкомпонентной системе — это первый закон Фика:
*** QuickLaTeX cannot compile formula:
\[dm=-D\frac{d\rho }{dx}dSdt\ \left(1\right)\]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»177″ height=»39″ />
где dm – масса первого компонента, которая переносится за время dt через элементарную площадку dS в направлении нормали x к рассматриваемой площадке в сторону убывания плотности первого компонента, – градиент плотности, D – коэффициент диффузии.
Если в однокомпонентной системе выделить группу молекул, выравнивание концентрации выделенных частиц по объёму сосуда называется самодиффузией. Самодиффузия тоже описывается уравнением диффузии (первым законом Фика), в котором коэффициент D- называется коэффициентом самодиффузии.
Уравнение диффузии в трехмерном случае
В случае трехмерной диффузии изменение концентрации с течением времени при постоянной температуре и отсутствии внешних сил описывается дифференциальным уравнением диффузии:
*** QuickLaTeX cannot compile formula:
\[\frac{\partial c}{\partial t}=\frac{\partial }{\partial x}\left(D\frac{\partial c}{\partial x}\right)+\frac{\partial }{\partial y}\left(D\frac{\partial c}{\partial y}\right)+\frac{\partial }{\partial z}\left(D\frac{\partial c}{\partial z}\right) \qquad (2)\]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»447″ height=»45″ />
где D- коэффициент диффузии, t- время. Если D не зависит от концентрации, то уравнение диффузии будет иметь вид:
*** QuickLaTeX cannot compile formula:
\[\frac{\partial c}{\partial t}=D\Delta c\ \left(3\right)\]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»118″ height=»41″ />
Уравнение (3) еще называют вторым законом Фика, где — дифференциальный оператор Лапласа.
В том случае, если перенос вещества вызван лишь градиентом его концентрации уравнение диффузии можно записать и в следующем виде:
*** QuickLaTeX cannot compile formula:
\[\frac{dc}{dt}=div\left(Dgrad\left(c\right)\right)-q\ \cdot c+F \qquad (4)\]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»327″ height=»39″ />
где c(x, t) — концентрация вещества в точке среды в момент времени t, D – коэффициент диффузии, q — коэффициент поглощения, a F — интенсивность источников вещества. Величины D, q и F обычно являются функциями координат и времени, а также могут зависеть от концентрации с(x, t). B последнем случае, уравнение диффузии (4) становится нелинейным. В анизотропной среде коэффициент диффузии D является тензорным полем. В случае, когда величины D и q постоянны уравнение (4) является уравнением параболического типа. Для такого типа уравнений в математической физике разработаны методы решения. Допущение о постоянстве коэффициента диффузии справедливо в большинстве случаев реализуемых на практике. Уравнения диффузии не содержат ни каких сведений о механизмах этого процесса. Основная цель решения уравнения — найти распределение примеси c(x,t) после диффузии в течение определенного времени при различных условиях осуществления процесса.
Решение уравнения диффузии
Для выделения единственного решения для уравнения (4) необходимо задать начальные и граничные условия. Обычно, рассматривают следующие граничные условия:
1) на границе поверхности S поддерживается заданное распределение вещества
2)на границе поверхности S поддерживается заданная плотность потока вещества, входящего в V через границу S:
где n – внутренняя нормаль к поверхности S
3) S- полупроницаема, и диффузия во внешнюю среду с заданной концентрацией через поверхность S происходит по линейному закону:
В простейшем случае, когда диффузия происходит только вдоль одной прямой и c=c(x,t)уравнение (3) запишется в виде:
*** QuickLaTeX cannot compile formula:
\[\frac{\partial c}{\partial t}=D\frac{{\partial }^2c}{\partial x^2}\ \left(3\right);t>0\ \left(5\right)\]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»214″ height=»42″ />
с начальным условием:
Тогда уравнение (5) имеет решение вида:
*** QuickLaTeX cannot compile formula:
\[c\left(x,t\right)=\int^{\infty }_{-\infty }{G\left(x,x',t\right)\varphi \left(x'\right)dx'\ }\left(6\right)\]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»313″ height=»43″ />
*** QuickLaTeX cannot compile formula:
\[G\left(x,x',t\right)=({4\pi Dt)}^{-\frac{1}{2}}{\exp \left[-\frac{{\left(x'-x\right)}^2}{4Dt}\right]\ }\]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»330″ height=»57″ />
— текущая координата интегрирования.
Выражение (6) называется фундаментальным решением уравнения диффузии в случае (5).
Примеры решения задач
Задание | Найти массу газа ( |
Решение | Запишем первый закон Фика в терминах условий задачи:
» width=»243″ height=»39″ /> Знак минус означает, направление вектора плотности. Возьмем модуль от правой части выражения (1.1): » width=»229″ height=»39″ /> Зная, что Соответственно преобразуем (1.2), найдем искомую массу газа: » width=»224″ height=»57″ /> |
Ответ | Искомая масса газа может быть найдена по формуле: |