Уравнение Пуассона описывает адиабатный процесс, протекающий в идеальном газе. Адиабатным называют такой процесс, при котором отсутствует теплообмен между рассматриваемой системой и окружающей средой: .Уравнение Пуассона имеет вид:
*** QuickLaTeX cannot compile formula:
\[PV^{k} =const \]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»107″ height=»17″ />
Здесь – объем, занимаемый газом,
– его давление, а величина
называется показателем адиабаты.

Показатель адиабаты в уравнении Пуассона
Показатель адиабаты можно рассчитать, как отношение изобарной теплоемкости газа к его изохорной теплоемкости:
*** QuickLaTeX cannot compile formula:
\[k=\frac{C_{p}}{C_{V}} \]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»63″ height=»41″ />
В практических расчётах удобно помнить, что для идеального газа показатель адиабаты равен , для двухатомного –
, а для трёхатомного –
.
Как же быть с реальными газами, когда важную роль начинают играть силы взаимодействия между молекулами? В этом случае показатель адиабаты для каждого исследуемого газа можно получить экспериментально. Один из таких методов был предложен в 1819 году Клеманом и Дезормом. Мы наполняем баллон холодным газом, пока давление в нём не достигнет . Затем открываем кран, газ начинает адиабатически расширяться, а давление в баллоне падает до атмосферного
. После того, как газ изохорно прогреется до температуры окружающей среды, давление в баллоне повысится до
. Тогда показатель адиабаты можно рассчитать за формулой:
*** QuickLaTeX cannot compile formula:
\[k=\frac{P_1 -P_{A}}{P_1 -P_2} \]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»105″ height=»41″ />
Показатель адиабаты всегда больше 1, поэтому при адиабатическом сжатии газа – как идеального, так и реального – до меньшего объема температура газа всегда возрастает, а при расширении газ охлаждается. Это свойство адиабатического процесса, называемое пневматическим огнивом, применяется в дизельных двигателях, где горючая смесь сжимается в цилиндре и воспламеняется от высокой температуры. Вспомним первый закон термодинамики: , где
— внутренняя энергия системы, а А – выполняемая над ней работа. Поскольку
то работа, осуществляемая газом, идёт только на изменение его внутренней энергии – а значит, температуры. Из уравнения Пуассона можно получить формулу для расчёта работы газа в адиабатном процессе:
*** QuickLaTeX cannot compile formula:
\[A=\frac{nRT}{k-1} (1-(\frac{V_1}{V_2} )^{k-1} )\]
*** Error message:
Cannot connect to QuickLaTeX server: cURL error 60: SSL certificate problem: unable to get local issuer certificate
Please make sure your server/PHP settings allow HTTP requests to external resources ("allow_url_fopen", etc.)
These links might help in finding solution:
http://wordpress.org/extend/plugins/core-control/
http://wordpress.org/support/topic/an-unexpected-http-error-occurred-during-the-api-request-on-wordpress-3?replies=37
» width=»197″ height=»40″ />
Здесь n – количество газа в молях, R – универсальная газовая постоянная, Т – абсолютная температура газа.
Уравнение Пуассона для адиабатического процесса применяется не только при расчётах двигателей внутреннего сгорания, но и в проектировании холодильных машин.
Стоит помнить, что уравнение Пуассона точно описывает только равновесный адиабатный процесс, состоящий из непрерывно сменяющих друг друга состояний равновесия. Если же мы в реальности откроем кран в баллоне, чтобы газ адиабатически расширился, возникнет нестационарный переходной процесс с завихрениями газа, которые затухнут из-за макроскопического трения.
Примеры решения задач
ПРИМЕР 1
Задание | Одноатомный идеальный газ адиабатически сжали так, что его объем увеличился в 2 раза. Как изменится давление газа? |
Решение | Показатель адиабаты для одноатомного газа равен » width=»246″ height=»45″ /> где R – универсальная газовая постоянная, а і – степень свободы молекулы газа. Для одноатомного газа степень свободы равен 3: это значит, что центр молекулы может совершать поступательные движения по трём координатным осям. ![]() Поэтому показатель адиабаты: » width=»185″ height=»39″ /> Представим состояния газа в начале и конце адиабатного процесса через уравнение Пуассона: » width=»183″ height=»22″ /> » width=»224″ height=»22″ /> » width=»257″ height=»48″ /> |
Ответ | Давление уменьшится в 3,175 раза. |